Sentiment Analysis on Public Opinions Regarding the 2024 Regional Elections Using Long Short-Term Memory (LSTM), Random Forest, and Naive Bayes
Abstract
The 2024 Regional Elections (Pilkada) have become a hot topic, sparking extensive discussions on social media, particularly Twitter/X. This study aims to analyze public sentiment regarding the elections using three primary approaches: Long Short-Term Memory (LSTM), Random Forest, and Naive Bayes. The data undergoes six pre-processing stages and is represented using Word2Vec. The findings indicate that LSTM achieves the best performance with an accuracy of 94.21%, followed by Random Forest (92.78%) and Naive Bayes (89.43%). Further analysis reveals that negative sentiments are predominantly influenced by policies and candidates’ performance. This research provides insights into the effectiveness of deep learning methods compared to traditional techniques in social media sentiment analysis
References
Ahmad, A., Gata, W., & Panggabean, S. (2024). Sentimen Analisis dengan Long Short-Term Memory dan Synthetic Minority Over Sampling Technic Pada Aplikasi Digital Perbankan. 8(4).
Asamoah, E., Heuvelink, G. B. M., Chairi, I., Bindraban, P. S., & Logah, V. (2024). Random forest machine learning for maize yield and agronomic efficiency prediction in Ghana. Heliyon, 10(17), e37065. https://doi.org/10.1016/j.heliyon.2024.e37065
Bilal, A., Imran, A., Baig, T. I., Liu, X., Long, H., Alzahrani, A., & Shafiq, M. (2024). Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification. PLoS ONE, 19(1 January), 1–27. https://doi.org/10.1371/journal.pone.0295951
Budi, S., Gata, W., Noor, M., Pangabean, S., & Rahayu, C. S. (2022). News Portal Website Measurement Analysis Using Iso/Iec 25010 and Mccall Methods (Analisis Pengukuran Website Portal Berita Menggunakan Metode Iso/Iec 25010 dan McCall). Journal of Applied Engineering and Technological Science, 4(1), 273–285.
Carpenter, J. P., Rimmereide, H. E., & Turvey, K. (2024). Exploring and comparing teachers’ X/Twitter use in three countries: Purposes, benefits, challenges and changes. British Journal of Educational Technology, November, 1–19. https://doi.org/10.1111/bjet.13538
Fellah, A., Zahaf, A., & Elçi, A. (2024). Semantic Similarity Measure Using a Combination of Word2Vec and WordNet Models. Indonesian Journal of Electrical Engineering and Informatics, 12(2), 455–464. https://doi.org/10.52549/ijeei.v12i2.5114
Idham, I., Ghudafa Taufik Akbar, M., Panggabean, S., & Noor, M. (2022). Perbandingan Prediksi Harga Saham Dengan Menggunakan LSTM GRU Dengan Transformer. Smart Comp: Jurnalnya Orang Pintar Komputer, 11(1), 44–47. https://doi.org/10.30591/smartcomp.v11i1.3185
Ige, T., Kiekintveld, C., Piplai, A., Waggler, A., Kolade, O., & Matti, B. H. (2024). An investigation into the performances of the Current state-of-the-art Naive Bayes, Non-Bayesian and Deep Learning Based Classifier for Phishing Detection: A Survey. http://arxiv.org/abs/2411.16751
Kusuma, M. R., Windu Gata, Sigit Kurniawan, Dedi Dwi Saputra, & Supriadi Panggabean. (2023). Software Defect Prediction For Quality Evaluation Using Learning Techniques Ensemble Stacking. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 13(2), 1–13. https://doi.org/10.35585/inspir.v13i2.58
Liang, M., Liu, R. W., Gao, R., Xiao, Z., Zhang, X., & Wang, H. (2024). A Survey of Distance-Based Vessel Trajectory Clustering: Data Pre-processing, Methodologies, Applications, and Experimental Evaluation. 1–21. http://arxiv.org/abs/2407.11084
M. Afriansyah, Joni Saputra, Ardhana, V. Y. P., & Yuan Sa’adati. (2024). Algoritma Naive Bayes Yang Efisien Untuk Klasifikasi Buah Pisang Raja Berdasarkan Fitur Warna. Journal of Information Systems Management and Digital Business, 1(2), 236–248. https://doi.org/10.59407/jismdb.v1i2.438
Monteverde-Suárez, D., González-Flores, P., Santos-Solórzano, R., García-Minjares, M., Zavala-Sierra, I., de la Luz, V. L., & Sánchez-Mendiola, M. (2024). Predicting students’ academic progress and related attributes in first-year medical students: an analysis with artificial neural networks and Naïve Bayes. BMC Medical Education, 24(1), 1–11. https://doi.org/10.1186/s12909-023-04918-6
Muchamad Bachram Shidiq, Gata, W., Kurniawan, S., Saputra, D. D., & Panggabean, S. (2023). Time Effort Prediction Of Agile Software Development Using Machine Learning Techniques. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 13(2), 39–48. https://doi.org/10.35585/inspir.v13i2.57
Murthy, D. (2024). Sociology of Twitter/X: Trends, Challenges, and Future Research Directions. Annual Review of Sociology, 50(1), 169–190. https://doi.org/10.1146/annurev-soc-031021-035658
Panggabean, S., Gata, W., & Setiawan, T. A. (2022). Analysis of Twitter Sentiment Towards Madrasahs Using Classification Methods. Journal of Applied Engineering and Technological Science, 4(1), 375–389. https://doi.org/10.37385/jaets.v4i1.1088
Panggabean, S., Ibrahim, A. K., & Azmani, A. (2024). Optimizing Student Extracurricular Classification : RapidMiner Based K- Means Clustering Study at Darunnajah High School. 01(01), 25–31.
Panggabean, S., & Wahyu Joko Saputro. (2024). Analyzing Student Academic Achievement Using Machine Learning Techniques at Senior High School Darunnajah Jakarta. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 14(1), 125–143. https://doi.org/10.35585/inspir.v14i1.81
Wardaniah, S., Listia, H., Wulandari, S., Ramadhani, F., Dewi, S., Hasan, A., Studi, P., Komputer, I., Medan, N., Medan, K., Utara, P. S., Studi, P., Profesi, P., Tinggi, S., Kesehatan, I., Kabanjahe, A., Karo, K., & Utara, P. S. (2024). Analisis Sentimen Publik Terhadap Isu Pembatalan Revisi UU Pilkada 2024 dengan NLP. 3(2), 1367–1376.
Yunita Simatupang. (2024). DINAMIKA POLITIK DAN PILKADA DI KOTA KENDARI: Analisis Pengaruh Media Sosial dalam Kampanye Politik Lokal. Journal Publicuho, 7(1), 439–447. https://doi.org/10.35817/publicuho.v7i1.506
Zheng, J., Xin, D., Cheng, Q., Tian, M., & Yang, L. (2024). The Random Forest Model for analyzing and Forecasting the US Stock Market under the background of smart finance. 82–90. https://doi.org/10.2991/978-94-6463-419-8_11
Zhou, J., Ye, Z., Zhang, S., Geng, Z., Han, N., & Yang, T. (2024). Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data. Heliyon, 10(16), e35945. https://doi.org/10.1016/j.heliyon.2024.e35945
All our articles are published under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.